wo 2015/197202 A1 || IO OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

30 December 2015 (30.12.2015)

=
WIPO I PCT

\

(10) International Publication Number

WO 2015/197202 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
HO3M 7/30 (2006.01) kind of national protection available). AE, AG, AL, AM,
. .. AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/EP2015/025042 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
International Fi]ing Date: HN, HR, HU, ID, IL, H\I, IR, IS, JP, KE, KG, KN, KP, KR,
26 June 2015 (26.06.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Priority Data: . L

1411531.5 27 June 2014 (27.06.2014) GB (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
Applicant: GURULOGIC MICROSYSTEMS OY GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[FUFI]; Linnankatu 34, 20100 Turku (FI).

Inventors: KARKKAINEN, Tuomas; Rautalankatu 2
B17, 20320 Turku (FI). KALEVO, Ossi; Ketunhinti 1,

37800 Akaa (FI).

Agent: NORRIS, Timothy Sweyn; BASCK, 9 Meadow-

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

ford, Newport, Saffron Walden, Essex CB11 3QL (GB).

[Continued on next page]

(54) Title: ENCODER, DECODER AND METHOD

~

Determine at least partial reoccurrences
of data blocks/packets within input data (D1)
102

Encode unchanged and changed

data blocks/packets into data streams
104

i

Entropy-encode data streams
to generate encoded data (E2)
106

I 1

FIG.

(57) Abstract: An encoder for encoding input data (D1) to generate corres-
ponding encoded data (E2) includes data processing hardware which is oper -
able: (a) to determine at least partial reoccurrences of data blocks or data
packets within the input data (D1), wherein the data blocks or data packets
include a plurality of bytes; (b) to employ at least one reference symbol to
relate reoccurrences of mutually similar data blocks or data packets and/or to
indicate whether or not there are reoccurrences of mutually similar data
blocks or data packets within the input data (D1); (¢) to employ a plurality of
change symbols, for example a plurality of mask bits, to indicate changed
and unchanged data elements of partial reoccurrences of data blocks or data
packets within the input data (D1) and a change of data values of changed
data elements; and (d) to encode the at least one reference symbol and the
plurality of change symbols into the encoded data (E2). There are provided
methods of using the encoder to encode input data (D1) to generate the cor-
responding encoded data (E2). Moreover, there are provided a correspond-
ing decoder, and a corresponding method ot decoding the encoded data (E2)
to generate corresponding decoded data (D3).

WO 2015/197202 A1 WK 00N O O A

Declarations under Rule 4.17: — of inventorship (Rule 4.17(iv))
— as to the identity of the inventor (Rule 4.17(i)) Published:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

with international search report (Art. 21(3))

10

15

20

25

30

WO 2015/197202 PCT/EP2015/025042

ENCODER, DECODER AND METHOD

TECHNICAL FIELD

The present disclosure relates to encoders for encoding input data (D1) to generate
corresponding encoded data (E2); the present disclosure also relates to methods of
encoding input data (D1) to generate corresponding encoded data (E2). Moreover,
the present disclosure concerns decoders for decoding encoded data (E2) to
generate corresponding decoded data (D3); the present disclosure also concerns
methods of decoding encoded data (E2) to generate corresponding decoded data
(D3). Furthermore, the present disclosure is concerned with computer program
products comprising a non-transitory computer-readable storage medium having
computer-readable instructions stored thereon, the computer-readable instructions
being executable by a computerized device comprising processing hardware to
execute aforesaid methods. Additionally, the present disclosure concerns codecs
including at least one aforementioned encoder and at least one aforementioned

decoder.

BACKGROUND

Various known documents providing a technological background for the present
disclosure are listed in the APPENDIX associated with the present disclosure.

Generally, algorithms used to compress data are based either on a lossless
compression method [3] or on a lossy compression method [4]. In lossless
compression, various files, namely data (D1), are compressed in such a manner that

the data (D1) can later be recovered as it was originally.

Conventionally, it is known to employ data de-duplication methods [5] when encoding
the data (D1), which attempt to eliminate duplicate copies of segments of data in the
data (D1), namely those data segments which have not changed when they
repetitively reoccur when the data (D1) is, for example, temporally streamed. Known

10

15

20

25

30

WO 2015/197202 PCT/EP2015/025042

data de-duplication methods are able to find efficiently such data blocks that are

exactly similar to a desired data block.

Generally, known data de-duplication methods recognize previously occurring data

segments by using various different methods, such as:

(i) by detecting a number of changed data elements in a given data segment
relative to a reference data segment;

(ii) by computing a sum of absolute differences between data elements of the
given data segment and the reference data segment;

(i) by utilizing redundancy check tables; or

(iv) by employing sliding-block methods.

Entire files can also be de-duplicated, in which case a symbol used to replace

duplicate files produces an excellent compression ratio [5].

Moreover, data de-duplication can be executed in a post-processed manner, in which
case associated data processing is performed retroactively after the data (D1) has
been written. Alternatively, data de-duplication can be performed in real-time, namely
just as the data (D1) enters a given system, in which case a given recognized data
block is not written at all, but instead, a reference is made to an earlier data block
which is mutually similar to the given recognized data block.

Data de-duplication is used in various branches of contemporary information
technology industry, such as in data storage and in data transfer networks. For
example, data de-duplication is used in cloud services, in system backup copying
and in e-mail servers, wherein mutually similar files, or only slightly changed
substantially mutually similar files, are transferred continuously. Moreover, in Internet
communication networks, where responses to requests are sent, data bytes are
transmitted back and forth, and those bytes mostly contain partly or entirely the same
Internet Protocol (IP) packet data; data de-duplication is relevant to Wide Area

Network (WAN) Optimization, for example.

It is well-known previously that known data de-duplication methods are more cost-
efficient in comparison to traditional data compression methods. However, the known
data de-duplication methods suffer from several disadvantages. Firstly, the known

10

15

20

25

30

WO 2015/197202 PCT/EP2015/025042

de-duplication methods often use considerable data memory and processing power
as they attempt to achieve a desired data compression ratio. Generally, an
associated search area, namely an amount of memory used to find similarities,
needs to be increased to improve the data compression ratio. Moreover, CPU-
intensive methods, such as a sliding search method, need to be used to improve the
data compression ratio. The sliding search method seeks to identify a target data
block or data packet in a raw fashion by shifting inside a search area to a direction
pointed to by an algorithm employed for implementing the sliding search method.

Secondly, the known data de-duplication methods are not able to find such data
blocks or data packets whose content has changed slightly, but which still contains a
lot of unchanged data elements relative to the desired data block.

Thirdly, the known data de-duplication methods potentially result in data
fragmentation, especially when the processing associated with these de-duplication

methods is executed in real time.

SUMMARY

The present disclosure seeks to provide an improved encoder employing de-

duplication techniques that are capable of providing improved encoding performance.

Moreover, the present disclosure seeks to provide an improved decoder employing
duplication techniques that are capable of providing improved decoding performance.

In a first aspect, embodiments of the present disclosure provide an encoder for
encoding input data (D1) to generate corresponding encoded data (E2),
characterized in that the encoder includes data processing hardware which is
operable:

(a) to determine at least partial reoccurrences of data blocks or data packets
within the input data (D1), wherein the data blocks or data packets include a
plurality of bytes;

(b) to employ at least one reference symbol to relate reoccurrences of mutually

similar data blocks or data packets and/or to indicate whether or not there are

10

15

20

25

30

WO 2015/197202 PCT/EP2015/025042

reoccurrences of mutually similar data blocks or data packets within the input
data (D1);

(c) to employ a plurality of change symbols to indicate changed and unchanged
data elements of partial reoccurrences of data blocks or data packets within
the input data (D1) and a change of data values of changed data elements;
and

(d) to encode the at least one reference symbol and the plurality of change
symbols into the encoded data (E2).

The processing hardware of the encoder is operable to determine at least partial
reoccurrences of data blocks or data packets within the input data (D1). For this
purpose, the processing hardware of the encoder is optionally operable to determine
a most optimal size for the data blocks or data packets. Additionally, the processing
hardware of the encoder is optionally operable to provide, within the encoded data
(E2), information indicative of the most optimal size for the data blocks or data

packets.

Moreover, the processing hardware of the encoder is operable to employ at least one
reference symbol to relate reoccurrences of mutually similar data blocks or data
packets and/or to indicate whether or not there are reoccurrences of mutually similar
data blocks or data packets within the input data (D1). In this regard, the processing
hardware of the encoder is optionally operable to employ one or more pointers for
indicating one or more at least partial reoccurrences of data blocks or data packets
relative to their corresponding reference data block or data packet.

Optionally, the one or more pointers are one or more relative pointers.

Optionally, the encoded data (E2) in (d) above includes change symbols comprising
bits/flags indicative of changed and not-changed values and also changed values, or
change symbols contain information regarding changed or not-changed values and
also change of values within delta values . More optionally, in operation of the
encoder, the delta value is assigned a zero value for indicating not-changed, and a

non-zero value for indicating change.

10

15

20

25

30

WO 2015/197202 PCT/EP2015/025042

It will be appreciated that the “change symbol’ always contains all information that is
necessary for expressing that the value has changed, and also for expressing how
that particular value or its delta change will be transmitted further. That is, if
delta/ODelta values are used, then there will be only one value added into the
change symbol, and only into that symbol. Such single values can then, of course, be
inserted into a stream of values that contains those delta/ODelta values, whereas if a
bit/flag indicating change/no change is added to the change symbol, then there will
be two values instead of one, which can then of course be inserted into two streams.
One of these streams will contain the bits/flags indicating change/no-change, and the
second stream will then contain either the new values as such, or as difference
values in relation to the value that the block/packet to be duplicated had in that same

position.

With regard to the "reference symbol, it expresses whether or not a block or packet
has been duplicated, and also which block/packet is used in that partial or entire
duplication. That is, a value ‘0 in relative referencing or the block’s own index or
pointer in direct referencing indicates that the block will not be duplicated. Other
values then indicate where the reoccurrence of that block or packet can be found,
using either direct or relative referencing. Both direct and relative referencing can be
executed with different grades of precision; in other words, the addresses/indexes
may be addresses/indexes to a byte/word/block/packet. Of course, it is also possible
in direct referencing to use such a value which otherwise would not be a possible
location for a reoccurrence, to indicate that the block/packet in question was not
duplicated. As compared to using the block’s own index/pointer, using an impossible
direct reference value yields one particular advantage, namely the value will always
be the same, namely it can be entropy-compressed better for example. Such
impossible values in direct referencing are, for example, negative values or values
that occur outside a range of the block/packet. In indirect referencing, the aforesaid
zero value “0” always indicates a good (namely possible) value, because it will be the
same each time, and relatively it always points to that same block, and thus it will be
easy to identify that the block/packet in question cannot have a reoccurring

block/packet.

10

15

20

25

30

WO 2015/197202 -6- PCT/EP2015/025042

Moreover, the encoder is operable to employ a plurality of change symbols in (c) as a
plurality of mask bits to indicate changed and unchanged data elements (values) of
partial reoccurrences of data blocks or data packets within the input data (D1) and
also the changed values. Alternatively, change symbols can contain information
regarding changed or not-changed values and also change of values within delta

values.

Alternatively, optionally, the processing hardware of the encoder is operable to
represent one or more unchanged data elements of a given data block or data packet
by using one or more values indicative of no change, wherein the one or more values

are different to those present in the input data (D1).

Moreover, the processing hardware of the encoder is operable to encode the at least
one reference symbol and the plurality of change symbols, for example mask bits,
into the encoded data (E2). Optionally, the processing hardware of the encoder is
operable to encode the at least one reference symbol and the plurality of change
symbols, for example mask bits, into a plurality of data streams to provide the
encoded data (E2).

Moreover, optionally, the encoder includes an additional encoding unit for encoding
at least a portion of the at least one reference symbol and the plurality of change
symbols into the encoded data (E2). This additional encoding unit is optionally
operable to employ at least one of: entropy modifying encoding, delta encoding,
ODelta encoding as described in a patent application GB1303661.1 filed on 1t of
March 2013, ODelta coding with different predictors as described in a patent
application GB1412937.3, filed on 215t of July 2014, 1u or 8u range encoding, Run
Length Encoding (RLE), Split RLE (SRLE) as described in a patent application
GB130360.3 filed on 15t of March, 2013, interpolation encoding.

Embodiments of the present disclosure are of advantage in that the encoder is
capable, by way of its approach to implementing de-duplication, of providing

enhanced encoding performance.

10

15

20

25

30

WO 2015/197202 PCT/EP2015/025042

In a second aspect, embodiments of the present disclosure provide a method of
encoding input data (D1) in an encoder to generate corresponding encoded data
(E2), wherein the encoder includes data processing hardware for processing the
input data (D1), characterized in that the method includes:

(a) determining at least partial reoccurrences of data blocks or data packets
within the input data (D1), wherein the data blocks or data packets include a
plurality of bytes;

(b) employing at least one reference symbol to relate reoccurrences of mutually
similar data blocks or data packets and/or to indicate whether or not there are
reoccurrences of mutually similar data blocks or data packets within the input
data (D1) ;

(c) employing a plurality of change symbols to indicate changed and unchanged
data elements of partial reoccurrences of data blocks or data packets within
the input data (D1) and a change of data values of changed data elements;
and

(d) encoding the at least one reference symbol and the plurality of change
symbols into the encoded data (E2).

Optionally, in the method, the encoded data (E2) in (d) includes change symbols
comprising bits/flags indicative of changed and not-changed values and also
changed values or change symbols contain information regarding changed or not-
changed values and also change of values within delta values. More optionally, in
the method, the delta value is assigned a zero “0” value for indicating not-changed,

and a non-zero value for indicating change.

In a third aspect, embodiments of the present disclosure provide a computer program
product comprising a non-transitory (namely non-transient) computer-readable
storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device
comprising processing hardware to execute the aforementioned method.

In a fourth aspect, embodiments of the present disclosure provide a decoder for
decoding encoded data (E2) to generate corresponding decoded data (D3). The
decoder includes processing hardware for processing the encoded data (E2).

10

15

20

25

30

WO 2015/197202 -8- PCT/EP2015/025042

Optionally, the processing hardware of the decoder is operable to receive, within the

encoded data (E2), information indicative of a size of data blocks or data packets.

The processing hardware of the decoder is operable to decode the encoded data
(E2) to identify at least one reference symbol and a plurality of change symbols.
Optionally, the processing hardware of the decoder is operable to decode the at least
one reference symbol and the plurality of change symbols from the plurality of data
streams provided within the encoded data (E2).

Optionally, the processing hardware of the decoder is operable to decode the
encoded data (E2) to identify one or more pointers indicating one or more at least
partial reoccurrences of data blocks or data packets relative to their corresponding
reference data packet or data block.

The processing hardware of the decoder is then operable to employ the at least one
reference symbol, namely the one or more pointers, to generate data for at least
partial reoccurrences of data blocks or data packets within the encoded data (E2).

Moreover, the processing hardware of the decoder is operable to employ the plurality
of change symbols as a plurality of mask bits to generate data for changed data
elements of partial reoccurrences of data blocks or data packets within the encoded
data (E2). Alternatively, the change symbols are employed containing information
regarding changed or not-changed values and also change of values within delta

values.

Alternatively, optionally, the processing hardware of the decoder is operable to
decode one or more unchanged data elements of a given data block or data packet
from one or more values indicative of no change, wherein the one or more values are

different to those present in the decoded data (D3).

Subsequently, the processing hardware of the decoder is operable to assemble the
data generated for the at least partial reoccurrences of data blocks or data packets

10

15

20

25

30

WO 2015/197202 PCT/EP2015/025042

and the data generated for the changed data elements of the partial reoccurrences of
data blocks or data packets, to generate the decoded data (D3).

Moreover, optionally, the decoder includes an additional decoding unit for decoding
at least a portion of the at least one reference symbol and the plurality of change
symbols from the encoded data (E2). This additional decoding unit is optionally
operable to employ at least one of: entropy modifying decoding, delta decoding,
ODelta decoding, 1u or 8u range decoding, run length decoding, split run length
decoding, interpolation decoding.

In a fifth aspect, embodiments of the present disclosure provide a simple and fast
method of decoding encoded data (E2) to generate corresponding decoded data
(D3).

In a sixth aspect, embodiments of the present disclosure provide a computer
program product comprising a non-transitory (namely non-transient) computer-
readable storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device

comprising processing hardware to execute the aforementioned method.

In a seventh aspect, embodiments of the present disclosure provide a codec
including the aforementioned encoder and the aforementioned decoder.

Additional aspects, advantages, features and objects of the present disclosure would
be made apparent from the drawings and the detailed description of the illustrative
embodiments construed in conjunction with the appended claims that follow.

It will be appreciated that features of the present disclosure are susceptible to being
combined in various combinations without departing from the scope of the present
disclosure as defined by the appended claims.

10

15

20

25

30

-10 -

WO 2015/197202 PCT/EP2015/025042

DESCRIPTION OF THE DRAWINGS

The summary above, as well as the following detailed description of illustrative
embodiments, is better understood when read in conjunction with the appended
drawings. For the purpose of illustrating the present disclosure, exemplary
constructions of the disclosure are shown in the drawings. However, the present
disclosure is not limited to specific methods and apparatus disclosed herein.
Moreover, those in the art will understand that the drawings are not to scale.
Wherever possible, like elements have been indicated by identical numbers.

Embodiments of the present disclosure will now be described, by way of example
only, with reference to the following diagrams wherein:

FIG. 1 is a schematic illustration of an encoder for encoding input data (D1) to
generate corresponding encoded data (E2) and a decoder for decoding the
encoded data (E2) to generate corresponding decoded data (D3), wherein
the encoder and the decoder collectively form a codec, in accordance with
an embodiment of the present disclosure;

FIG.2 is an illustration of steps of a method of encoding input data (D1) to
generate corresponding encoded data (E2), in accordance with an
embodiment of the present disclosure;

FIGs. 3A and 3B collectively are an illustration of steps of an encoding process, in
accordance with an embodiment of the present disclosure;

FIG.4 is an illustration of steps of a method of decoding encoded data (E2) to
generate corresponding decoded data (D3), in accordance with an
embodiment of the present disclosure; and

FIGs. 5A and 5B collectively are an illustration of steps of a decoding process, in
accordance with an embodiment of the present disclosure.

In the accompanying diagrams, an underlined number is employed to represent an
item over which the underlined number is positioned or an item to which the
underlined number is adjacent. A non-underlined number relates to an item identified
by a line linking the non-underlined number to the item. When a number is non-
underlined and accompanied by an associated arrow, the non-underlined number is

used to identify a general item at which the arrow is pointing.

10

15

20

25

30

-11 -

WO 2015/197202 PCT/EP2015/025042

DETAILED DESCRIPTION OF EMBODIMENTS

The following detailed description illustrates embodiments of the present disclosure
and ways in which they can be implemented. Although the best mode of carrying out
the present disclosure has been disclosed, those skilled in the art would recognize
that other embodiments for carrying out or practicing the present disclosure are also

possible.

In overview, embodiments of the present disclosure are concerned with methods of
processing data, and apparatus for performing such processing of data, wherein data
de-duplication and duplication are performed, as will be elucidated in greater detail
below.

Referring to FIG. 1, embodiments of the present disclosure concern:

(i) an encoder 10 for encoding input data (D1) to generate corresponding
encoded data (E2), and corresponding methods of encoding the input data
(D1) to generate the encoded data (E2);

(i) a decoder 20 for decoding the encoded data (E2) to generate corresponding
decoded data (D3), and corresponding methods of decoding the encoded data
(E2) to generate the decoded data (D3); and

(i) a codec 30 including a combination of at least one encoder and at least one
decoder, namely a combination of the encoder 10 and the decoder 20.

Optionally, the decoded data (D3) is exactly similar to the input data (D1), as in a
lossless mode of operation. Alternatively, optionally, the decoded data (D3) is
approximately similar to the input data (D1), as in a lossy mode of operation. Yet
alternatively, optionally, the decoded data (D3) is different to the input data (D1), for
example by way of a transformation, but retains substantially similar information
present in the input data (D1); for example, the decoded data (D3) is usefully made
different to the input data (D1) when reformatting of the data (D3) is also required, for
example to be compatible with different types of communication platform, software
layer, type of communication device, and so forth. Although some embodiments of
the present disclosure are described in respect of image data present in the input

data (D1), namely subject to representation via use of mask bits, it will be

10

15

20

25

30

-12-

WO 2015/197202 PCT/EP2015/025042

appreciated that embodiments of the present disclosure are capable of encoding a
wide variety of mutually different types of input data (D1), for example sensor data,
For purposes of generalizing for all types of data, a term “change symbofl is
employed, for example in the appended claims, which, in the special example case of
the input data (D1) including image data, the data symbols are implemented as mask
bits.

The encoder 10 includes processing hardware for processing the input data (D1).
Optionally, the processing hardware of the encoder 10 is operable to encode the
input data (D1) provided as at least one of: one-dimensional data, multi-dimensional
data, audio data, image data, video data, sensor data, text data, binary data, medical
data but not limited thereto. Optionally, the input data (D1) is received as a stream or
a file. Optionally, the input data (D1) includes a lot of small variations, for example a

mixture of structured details and noise.

The processing hardware of the encoder 10 is operable to determine at least partial
reoccurrences of data blocks or data packets within the input data (D1). For this
purpose, the processing hardware of the encoder 10 is optionally operable to
determine a most optimal size for the data blocks or data packets, as will be
elucidated in greater detail below. Additionally, the processing hardware of the
encoder 10 is optionally operable to provide, within the encoded data (E2),
information indicative of the most optimal size for the data blocks or data packets.

In order to determine the at least partial reoccurrences of data blocks or data
packets, the processing hardware of the encoder 10 is operable to employ one or
more redundancy checks using one or more suitable redundancy checking methods.
Optionally, a redundancy checking method is employed to select a data block or data
packet that maximises a count of unchanged data elements, or minimizes a sum of
absolute errors between data elements of the data block or data packet and data
elements of a corresponding reference data block or data packet.

Additionally, optionally, the redundancy checking method is employed to compute
one or more redundancy-check values for a given data block or data packet. In an
example, a single long redundancy-check value is calculated for the given data block

10

15

20

25

30

-13 -

WO 2015/197202 PCT/EP2015/025042

or data packet. In another example, multiple short redundancy-check values are
calculated for the given data block or data packet.

If a redundancy-check value computed for the given data block or data packet does
not match with any previously stored information sufficiently well, then the given data
block or data packet is identified as a non-duplicate data block or data packet. This
non-duplicate data block or data packet is written or delivered as it is in the encoded
data (E2). Additionally, optionally, the non-duplicate data block or data packet can
also be inserted as a new reference data block or data packet into a stored
information sequence for redundancy checking purposes.

Beneficially, the redundancy-check values can be computed in various ways, but a
main consideration is that they should be able to distinguish non-duplicate data
blocks or data packets with sufficient precision. However, it will be appreciated that it
is not advantageous to waste computing resources of the processing hardware of the
encoder 10 by computing an unnecessarily precise redundancy-check value, if a
given task can be implemented by using an optimized algorithm, which is less

computation and data memory resource-intensive.

Moreover, the processing hardware of the encoder 10 is operable to employ at least
one reference symbol to relate reoccurrences of mutually similar data blocks or data
packets and/or to indicate whether or not there are reoccurrences of mutually similar
data blocks or data packets within the input data (D1). In this regard, the processing
hardware of the encoder 10 is optionally operable to employ one or more pointers for
indicating one or more at least partial reoccurrences of data blocks or data packets
relative to their corresponding reference data block or data packet. Thus, the at least
one reference symbol is employed as the one or more pointers that point to the

corresponding reference data block or data packet.

Optionally, the one or more pointers are one or more relative pointers that indicate
relative distances of the one or more at least partial reoccurrences of data blocks or
data packets from the corresponding reference data block or data packet within the
input data (D1). In other words, the one or more pointers optionally indicate positions
of the one or more at least partial reoccurrences of data blocks or data packets

10

15

20

25

30

-14 -

WO 2015/197202 PCT/EP2015/025042

relative to the corresponding reference data block or data packet within the input data
(D1).

Optionally, the one or more pointers include reference addresses to particular
locations, where information pertaining to their corresponding reference data blocks
or data packets can be obtained. Optionally, the one or more pointers include
reference addresses to a piece of information that needs to be used when decoding
the encoded data (E2) to reconstruct the decoded data (D3). In other words, the one
or more pointers point to data memory locations of their corresponding reference

data blocks or data packets.

Moreover, optionally, the one or more pointers are expressed as at least one of: byte-
accurate pointers (namely direct addressing), data-value-accurate pointers, word-
accurate pointers, or block-accurate pointers (namely addressing based on a number
of a given block). Optionally, indicating the place of reoccurrence (namely “pointer”)
can take place in a relative manner, such as with help of relative per-block symbol
values (namely by employing a relative block-accurate shift), relative byte-accurate
shift, relative data-value-accurate shift, relative word-accurate shift and so forth.

Moreover, the processing hardware of the encoder 10 is operable to employ a
plurality of change symbols as a plurality of mask bits comprising bits/flags to indicate
changed and unchanged data elements, namely values, of partial reoccurrences of
data blocks or data packets and also changed values within the input data (D1).
Optionally, a mask bit associated with an unchanged data element is set to a ‘0’
value, while a mask bit associated with a changed data element is set to a ‘1’ value,
or vice versa. Thus, the plurality of mask bits describe which data elements are
changed and which data elements are unchanged. Alternatively, the change
symbols contain information regarding changed or not-changed values, and also
change of values within delta values. Optionally, the delta value is assigned a zero
“0” value for indicating not-changed, and a non-zero value for indicating change.

Alternatively, optionally, the processing hardware of the encoder 10 is operable to
represent one or more unchanged data elements of a given data block or data packet

10

15

20

25

30

-15 -

WO 2015/197202 PCT/EP2015/025042

by using one or more values indicative of no change, wherein the one or more values

are different to those present in the input data (D1).

Moreover, the processing hardware of the encoder 10 is operable to encode the at
least one reference symbol and the plurality of change symbols into the encoded
data (E2). Optionally, the processing hardware of the encoder 10 is operable to
encode the at least one reference symbol and the plurality of change symbols into a
plurality of data streams to provide the encoded data (E2).

The changed data elements are written or transmitted as such if a lossless mode of
operation is used. If a lossy mode of operation is used, the changed data elements
are quantized.

If a near-lossless mode of operation is used, at least a portion of the changed data
elements is quantized. For this purpose, the processing hardware of the encoder 10
is optionally operable to quantize only some portions of the changed data elements,
based on an analysis of content, type and/or composition of the input data (D1).
Consequently, the encoder 10 is capable of adaptively varying a data compression

ratio between the input data (D1) and the encoded data (E2).

Moreover, the changed data elements are encoded, for example, as at least one of:
original data values, quantized original data values, delta values, quantized delta
values, ODelta values, or quantized ODelta values. Herein, “ODelta” refers to a
differential form of encoding based upon wraparound in a binary counting regime, for
example as described in patent document GB1303661.1, hereby incorporated by

reference.

Optionally, when original values, delta values or ODelta values are used to write and
deliver changed data elements with respect to a reference data block or data packet,
the unchanged data elements are, for example, set to a value of “0”, indicating no
change, or to a value that is not otherwise present in the data. The latter option is a
better solution when original values are used, but it requires delivery of the value that
is not otherwise present in the data. Subsequently, a changed data element is set
either to its original data value or to a delta value, namely a data value that is equal

10

15

20

25

30

-16 -

WO 2015/197202 PCT/EP2015/025042

to a difference between the original data value and a corresponding data value in the
reference frame, block or packet, with or without quantization. If the changed data
element is set to its original data value, and that data value happens to be equal to
“0”, and “0” is also used to indicate unchanged data elements, then a confusion,
namely a data ambiguity, potentially occurs. Therefore, the latter option is preferable
to employ in embodiments of the present disclosure, namely using a data value that
is not otherwise present in the data to avoid such ambiguity. Then, the data value
that is used to indicate the unchanged data elements is delivered in encoded data
(E2). A method described in GB1411451.6 is a good example of a method that can
be used with this embodiment of the present disclosure, when a reference symbol is
used to indicate the reference data block or data packet, for example some previous
data block or data packet.

If the lossy mode of operation is used, namely a form of quantization is used, and
reference symbols are simultaneously updated or added, then beneficially the
processing hardware of the encoder 10 takes into account, when forming the
reference blocks, those changes that de-quantization will cause to corresponding
decoded data (D3). The effect of quantization is also beneficially taken into account
when determining a data value to be used to indicate the unchanged data elements
when changed data elements are delivered with quantized original values. When
quantized delta values or quantized ODelta values are used for delivery of changed
data elements, then the quantization beneficially do not change the changed values

to zero when zero is used for unchanged data elements.

Moreover, optionally, the encoder 10 includes an additional encoding unit for
encoding at least a portion of the at least one reference symbol and the plurality of
change symbols into the encoded data (E2). This additional encoding unit is
optionally operable to employ at least one of: entropy modifying encoding, delta
encoding, ODelta encoding, 1u or 8u range encoding, Run Length Encoding (RLE),
Split RLE (SRLE), interpolation encoding.

Furthermore, optionally, the encoder 10 is operable to communicate the encoded
data (E2) to a data server and/or data storage (not shown in Fig. 1) for storing in a
database (not shown in Fig. 1). The data server and/or data storage is arranged to be

10

15

20

25

30

-17 -

WO 2015/197202 PCT/EP2015/025042

accessible to the decoder 20, which is beneficially compatible with the encoder 10,
for subsequently decoding the encoded data (E2).

In some examples, the decoder 20 is optionally operable to access the encoded data
(E2) from the data server and/or data storage.

In alternative examples, the encoder 10 is optionally operable to stream the encoded
data (E2) to the decoder 20, either via a communication network or via a direct
connection. Moreover, it is to be noted that a device equipped with a hardware-based
or software-based encoder can also communicate directly with another device

equipped with a hardware-based or software-based decoder.

In yet other alternative examples, the decoder 20 is optionally implemented so as to
retrieve the encoded data (E2) from a non-transitory (namely non-transient)
computer-readable storage medium, such as a hard drive and a Solid-State Drive
(SSD).

The decoder 20 includes processing hardware for processing the encoded data (E2).

Optionally, the processing hardware of the decoder 20 is operable to receive, within
the encoded data (E2), information indicative of a size of the data blocks or data

packets.

The processing hardware of the decoder 20 is operable to decode the encoded data
(E2) to identify the at least one reference symbol and the plurality of change symbols.
Optionally, the processing hardware of the decoder 20 is operable to decode the at
least one reference symbol and the plurality of change symbols from the plurality of

data streams provided within the encoded data (E2).

Optionally, the processing hardware of the decoder 20 is operable to decode the
encoded data (E2) to identify the one or more pointers indicating one or more at least
partial reoccurrences of data blocks or data packets relative to their corresponding
reference data packet or data block.

10

15

20

25

30

WO 2015/197202 -18 - PCT/EP2015/025042

The processing hardware of the decoder 20 is then operable to employ the at least
one reference symbol, namely the one or more pointers, to generate data for at least
partial reoccurrences of data blocks or data packets within the encoded data (E2).
The one or more pointers, being optionally the one or more relative pointers, enable
the processing hardware of the decoder 20 to determine positions of the at least
partial reoccurrences of data blocks or data packets relative to their corresponding

reference data packets or data blocks.

Moreover, the processing hardware of the decoder 20 is operable to employ the
plurality of change symbols as plurality of mask bits to generate data for changed
data elements of partial reoccurrences of data blocks or data packets within the
encoded data (E2). Alternatively, the change symbols are employed containing
information regarding changed or not-changed values and also change of values

within delta values.

Alternatively, optionally, the processing hardware of the decoder 20 is operable to
decode one or more unchanged data elements of a given data block or data packet
from one or more values indicative of no change, wherein the one or more values are

different to those present in the decoded data (D3).

Subsequently, the processing hardware of the decoder 20 is operable to assemble
the data generated for the at least partial reoccurrences of data blocks or data
packets and the data generated for the changed data elements of the partial
reoccurrences of data blocks or data packets, to generate the decoded data (D3).

Optionally, the decoded data (D3) is provided as at least one of: one-dimensional
data, multi-dimensional data, audio data, image data, video data, sensor data, text

data, binary data, medical data but not limited thereto.

Moreover, optionally, the decoder 20 includes an additional decoding unit for
decoding at least a portion of the at least one reference symbol and the plurality of
change symbols from the encoded data (E2). This additional decoding unit is
optionally operable to employ at least one of: entropy modifying decoding, delta

WO 2015/197202 -19- PCT/EP2015/025042

decoding, ODelta decoding, 1u or 8u range decoding, run length decoding, split run

length decoding, interpolation decoding.

Furthermore, methods of data processing that occur in the encoder 10 and the

decoder 20 optionally include sub-methods as described in respect of a patent

application GB1411451.6, hereby incorporated by reference, wherein the sub-

methods of this patent application are provided in Table 1.

Table 1: Sub-methods employed in the encoder 10 and the decoder 20

Use Region Sub-method Detail

Encoder 10 A method of encoding input data (D1) to generate corresponding
encoded data (E2), wherein the method includes processing the
input data (D1) as data blocks and/or data packets, characterized in
that the method includes:

(i) identifying substantial reoccurrences of data blocks and/or
data packets within the input data (D1);

(i) identifying where elements are unchanged within the
substantially reoccurring data blocks and/or data packets,
and/or where elements are changed within the substantially
reoccurring data blocks and/or data packets;

(i) encoding unchanged data elements in the encoded data
(E2) by employing at least one corresponding symbol or at
least one corresponding bit indicating an absence of change
in the unchanged data elements relative to corresponding
elements in a reference data block and/or data packet; and

(iv) encoding changed data elements in the encoded data (E2).

Decoder 20 A method of decoding encoded data (E2) to generate

corresponding decoded data (D3), wherein the method includes
processing the encoded data (E2) as data blocks and/or data
packets, characterized in that the method includes:

(i) decoding the encoded data (E2) to generate data for

changed data elements, the changed data elements being

10

15

-920 -

WO 2015/197202 PCT/EP2015/025042

elements that are changed within substantial reoccurrences
of data blocks and/or data packets within the encoded data
(E2);

(i) decoding the encoded data (E2) to generate data for
unchanged data elements, the unchanged data elements
being elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within the
encoded data (E2), wherein the unchanged data elements
are represented by at least one corresponding symbol or at
least one corresponding bit indicating an absence of change
in the unchanged data elements relative to corresponding
elements in a reference data block and/or data packet; and

(iiiy assembling the data generated for the changed and
unchanged data elements in steps (i) and (ii) into data blocks

and/or data packets to generate the decoded data (D3).

FIG. 1 is merely an example, which should not unduly limit the scope of the claims
herein. It is to be understood that the specific designation for the codec 30 is
provided as an example and is not to be construed as limiting the codec 30 to
specific numbers, types, or arrangements of encoders and decoders. A person
skilled in the art will recognize many variations, alternatives, and modifications of

embodiments of the present disclosure.

Optionally, the codec 30 is implemented within a single device. Alternatively,
optionally, the codec 30 is effectively implemented between multiple devices. In an
example, the codec 30 is optionally implemented as a broadcast system, wherein
there is an encoder 10 at a first spatial location and a plurality of decoders 20 at a
plurality of other spatial locations.

The codec 30 can be implemented as at least one of: a data codec, an audio codec,
an image codec and/or a video codec. The codec 30 is capable of compressing the
input data (D1) in a pre-processing stage in real time.

10

15

20

25

30

-29 -

WO 2015/197202 PCT/EP2015/025042

Moreover, the codec 30 can be implemented to provide a real-time data transfer
network coding method, which considerably saves bandwidth required for data
transfer, especially in such systems that are based on request-response type
communications, such as Hypertext Transfer Protocol (HTTP) [6] that is used in web
browsers and World Wide Web (www) servers for data transfer. In addition to the
HTTP protocol, the Real-Time Messaging Protocol (RTMP) [7] is often used for real-
time full-duplex data transfer in audio and video delivering services, and also in
playback video services. Thus, the codec 30 is relevant to both HTTP-based data
communication systems and RTMP-based data communication systems.

Moreover, optionally, the encoder 10 and the decoder 10 are operable to implement
chunked transfer encoding for HTTP and/or RTMP. Optionally, the HTTP and/or
RTMP employ fixed-sized data blocks and/or data packets inside requests and

responses to the requests.

The codec 30 is especially well-suited for communication protocols that are used to
transfer data blocks or data packets whose size is set exactly. For example, chunked
transfer encoding used in HTTP is an optimal usage area, because requests and
responses to the requests transferred in the chunked transfer encoding employ fixed-
sized data blocks or data packets. As huge amounts of data are transmitted over the
HTTP, a considerably high data compression ratio is achieved when the encoder 10

is employed to encode input data (D1) to generate corresponding encoded data (E2).

In respect of embodiments of the present disclosure, a further benefit gained by
using the HTTP is that an HTTP request/response, almost without exception,
contains precise information on what is being transferred and when it is being
transferred. This enables selection of optimal redundancy check tables for use during
encoding of the input data (D1). This potentially improves an associated data

compression ratio that is achievable.

Similar to HTTP, RTMP also defines specifications regarding transfer of data blocks
or data packets that have a specific defined size. On the Internet, the RTMP is often
used to transfer audio, image or video information, especially in real-time

communication. During a communication process, a size for a data block or data

10

15

20

25

30

929

WO 2015/197202 PCT/EP2015/025042

packet to be transferred is initialized at pre-set intervals according to a response time
and a capacity of a transfer network employed. This potentially improves the data

compression ratio that is achievable.

If transfer networks are used and a given transmitting party does not yet know
whether or not an encoding method pursuant to the present disclosure is to be
employed, it is possible to implement a proxy server that transforms information for a
recipient of data, in which case a desired compression ratio can be achieved
between a possibly slow recipient and a fast transmitter. In this scenario, the proxy
server informs the recipient about unchanged data elements of at least one
previously transmitted data block or data packet by sending a reference symbol
along with changed data elements, and mask bits or other indication of changed and
unchanged data elements in the data block or data packet to the recipient.

In an example, the proxy server is an HTTP-proxy or RTMP-proxy server, which is
situated at an optimal geographical location with respect to an associated data
supply service to be optimized and associated users to be served. Optionally,
methods pursuant to embodiments of the present disclosure are employed to make

ready-made cloud server solutions, such as Windows Azure [8], more efficient.

During the last few years (2010+), an amount of transfers of data, audio, image and
video has increased so rapidly that not even Moore’s Law [9] is able to follow that
kind of growth. Therefore, the codec 30 is potentially very useful for making data

transfers more efficient.

For illustration purposes only, there is next provided a numerical example of an
encoding method as executed within the encoder 10. In this example, the input data
(D1) includes data values that might correspond to separate audio packets, separate
image blocks, HTTP packet headers and so forth. The input data (D1) includes five
frames/blocks/packets, wherein each frame/block/packet contains 54 data values. It
can be understood that the input data (D1) has 270 data values, for example from an
18x15 image that is split into 18x3 data blocks. This results into five data blocks,
each of which has 54 data values. Alternatively, the input data (D1) can also be
considered to be 270 data values from a certain data stream that is generated by a

10

15

20

25

30

35

.93 .

WO 2015/197202 PCT/EP2015/025042

block encoder, for example as described in US patent document US 8,675,731 B2,
hereby incorporated by reference, for compression purposes.

The input data (D1) includes 270 data values (entropy = 1428.35 bits ~= 179 bytes),
and is represented as follows:

0, 12, 41, 157, 180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, 0, 0, 40, 120, 250, 64, 0,
118, 6, 206, 99, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 192, 146, 80, 16, 0, 254, 185, 9,0, 0, 0, 12, 41, 157, 180, 29, 0, 16, 243, 42,
42,172, 8,0, 69, 0, 0, 40, 121, 13, 64, 0, 118, 6, 206, 80, 62, 241, 193, 52, 172, 16,
17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31, 254, 201, 204, 80, 16, 1, 2, 175, 204,
0,0,0, 12,41, 157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 17, 64, O,
118, 6, 206, 76, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 209, 65, 80, 16, 1, 2, 168, 87, 0, 0, 0, 12, 41, 157, 180, 29, 0, 16, 243, 42,
42,172, 8, 0, 69, 0, 0, 40, 121, 25, 64, 0, 118, 6, 206, 68, 62, 241, 193, 52, 172, 16,
17, 60, 34, 201, 192, 220, 189, 31, 1883, 3, 31, 254, 221, 164, 80, 16, 1, 2, 155, 244,
0,0,0, 12,41, 157,180, 29, 0, 16, 243, 42,42, 172, 8, 0, 69, 0, O, 40, 121, 67, 64, O,
118, 6, 206, 26, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 233, 149, 80, 16, 1,2, 144,3,0,0

The input data (D1) is optionally entropy encoded, for example to 253 bytes, by using
an 8u range encoding method. By referring to such 8u range encoding, what is
meant with this is a range coding method which is used for coding 8-bit data values
in codec pursuant to the present disclosure. Range coding is explained here

. http://en.wikipedia.org/wiki/Range_coding

which is hereby incorporated by reference.

Now, this result includes also transmitting a probability table or a reasonably good
fixed table out of currently 22 alternative fixed probability tables in codec pursuant to
the present disclosure. The share of the range coded data is beneficially quite close
to the entropy, namely 179 bytes in this example, if a perfect probability table were
known and there would then be a need to transmit and/or approximate with a less
applicable probability table.

10

15

20

25

30

-924 -

WO 2015/197202 PCT/EP2015/025042

In order to determine a most optimal size for data blocks (hereinafter referred to as
“most optimal block size”), the processing hardware of the encoder 10 operates to
perform an initial run with an initial block size of seven. An Initial block size is
beneficially selected to be a relatively small number, for example in a range of 3 to 8,
to enable accurate detection of a most optimal block size. For example, this block
size of seven results in 39 data blocks as follows:

270=38x7+4

wherein 38 data blocks have a size of seven data values and one last data block has

a size of four data values.

For a given data block, a reference symbol ‘1’ is used for a corresponding reference
data block that arrives one data block before the given data block. Likewise, a
reference symbol ‘2’ is used, if the reference data block arrives one data block and
one data value before the given data block, and so on. Thus, the reference symbol
indicates a position of the reference data block relative to the given data block.

It will be appreciated that the size of a given data block may be considered optimal in
many different ways. However, typically, it is desired to optimize, for example to
minimize, the encoded data size after the duplication. Such optimization is usually
best achieved by attempting to find a block size that is as large as possible that yet
yields as many data blocks to be duplicated as possible. The next section describes
an example of one way of determining a data block size that is nearly optimal. Other
methods can also be used for determining optimal data block sizes, pursuant to the

present disclosure.

Moreover, it will be appreciated that in cases where the data to be encoded is
periodic, the optimal data block size is typically either the length of the period, a
multiple of the length of the period, or some number whose multiple will be

substantially equal to the length of the period.

If a block/period is repeated similarly many times consecutively, it is also possible,
pursuant to the present disclosure, to multiply the selected element to be duplicated

10

15

20

25

30

35

-95 .

WO 2015/197202 PCT/EP2015/025042

and the count of its repetitions. This may in some cases yield an efficient outcome
when encoding data, but mostly this can be taken care of much easier and handier

by entropy-coding the duplication symbols or by executing the duplication recursively.

For the sake of clarity, an example 9™ data block and its corresponding reference
data block have been underlined and represented as follows:

0, 12, 41, 157, 180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, 0, 0, 40, 120, 250, 64, 0,
118, 6, 206, 99, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 192, 146, 80, 16, 0, 254,185, 9,0, 0,0, 12, 41, 157, 180, 29, 0, 16, 243, 42,
42,172, 8,0, 69, 0, 0, 40, 121, 13, 64, 0, 118, 6, 206, 80, 62, 241, 193, 52, 172, 16,
17, 60, 34, 201, 192, 220, 189, 31, 1883, 3, 31, 254, 201, 204, 80, 16, 1, 2, 175, 204,
0,0,0,12,41,157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 17, 64, 0,
118, 6, 206, 76, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 209, 65, 80, 16, 1, 2, 168, 87,0, 0, 0, 12, 41, 157, 180, 29, 0, 16, 243, 42,
42,172, 8, 0, 69, 0, 0, 40, 121, 25, 64, 0, 118, 6, 206, 68, 62, 241, 193, 52, 172, 16,
17, 60, 34, 201, 192, 220, 189, 31, 1883, 3, 31, 254, 221, 164, 80, 16, 1, 2, 155, 244,
0,0,0, 12,41, 157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 67, 64, 0,
118, 6, 206, 26, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 233, 149, 80, 16, 1,2, 144,3,0,0

It will be appreciated that the actual reference data block is typically got from the
decoded data, but, because this data is now coded losslessly, then also the original
data values can be used for reference data blocks. As the reference data block
arrives 48 data values before the example data block, a reference symbol ‘48’ is

assigned for the example data block.

The first index of the reference data block is optionally calculated, in this example,

using the data-value-accurate reference indexing by using a following equation:

first_index_of reference_data_block = first_index_of current_data_block +
block_size + reference_symbol —
number_of nearest_reference.

With this example for the 9" data block, the equation get values such as:

56 +7+48-1=2,

10

15

20

25

30

WO 2015/197202 - 26- PCT/EP2015/025042

wherein the first_index_of current_data block is calculated from a following
equation:

first_index_of_current_data_block = (humber_of_current_data_block — 1) *
block_size,

wherein the number_of _current_data_block is 9 and the block_size is 7, for example.
The reference symbol, namely “48”,of the 9" data block have been underlined also
from the reference symbols after the next chapter.

It will be appreciated that a first data block does not have a corresponding reference
data block, and therefore, is not assigned a reference symbol. However, the last data
block is assigned its corresponding reference symbol. It will also be appreciated that
the last data block is incomplete, and therefore, data values of only four first data
elements of the reference data block are used to code the last data block. Thus, 38

reference symbols are assigned as follows:

0,0,0,0,0,0, 31, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 34

The processing hardware of the encoder 10 then operates to calculate the most
optimal block size, for example, as follows:

<most common reference symbol> + <initial block size>
— <reference symbol used for a nearest possible reference block>
=48+7-1=54

It will be appreciated that, in this particular case, the optimal block size for this
particular sequence of data is computed to be 54, which is also the length of the
repeating period of this sequence of data. Other suitable block sizes would be, for

example:

162,108, 27, 18,9, 6

10

15

20

25

30

35

-927-

WO 2015/197202 PCT/EP2015/025042

Optionally, some other reference symbol that occurs often and has a smaller value
than the most common reference symbol can be used in the most optimal block size
equation instead of most common reference symbol to enable deduplication for
higher amount of smaller blocks. It will also be appreciated that a number_of_a
nearest_reference is beneficially not used as a most common reference number,
because it might be affected with long continuum of similar data values and,

consequently, it might be sub-optimal.

In this manner, the encoding method involves finding reoccurrences of data blocks in
their own size, so that the data blocks do not need to be split into smaller data
segments, namely akin to a known slide search method. It is also evident that there
is no need to search for duplicate data blocks iteratively among all previously stored
information with all lengths and all positions, which would waste valuable computing

time and resources.

It will be appreciated that in case there is found a reasonably small number, but not
1, reference values, and a lot of used reference values, then it is often beneficial to
be used instead of the most commonly used reference value when calculating the
most optimal size for the block or packet. It will be further appreciated that the
preliminary search is beneficial to execute with relatively small block or packet sizes,
so that the short reference is not lost, but anyhow with sufficiently large block or
packet size so that lengthy chain of same data values does not result to first
reference value becoming the most common one. In an event that such a situation
occurs, then it is beneficial to select some often occurring small value which however
is bigger than 1, for calculating the most optimal size for the block or packet instead

of the most commonly used reference.

Now, the processing hardware of the encoder 10 operates to perform a next run with
the most optimal block size, namely a block size of 54. This results in five data blocks

as follows:

0, 12, 41, 157, 180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, 0, 0, 40, 120, 250, 64, 0,
118, 6, 206, 99, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 192, 146, 80, 16, 0, 254, 185, 9, 0, O,

10

15

20

25

30

35

40

WO 2015/197202 -28- PCT/EP2015/025042

0, 12, 41, 157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 13, 64, 0, 118,

6, 206, 80, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31,
254, 201, 204, 80, 16, 1, 2, 175, 204, 0, 0,

0, 12, 41, 157,180, 29, 0, 16, 243, 42,42,172, 8, 0, 69, 0, 0, 40, 121, 17, 64, 0, 118,
6, 206, 76, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31,
254, 209, 65, 80, 16, 1, 2, 168, 87, 0, O,

0, 12, 41, 157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 25, 64, 0, 118,
6, 206, 68, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31,
254,221,164, 80, 16, 1, 2, 155, 244, 0, 0,

0, 12, 41, 157,180, 29, 0, 16, 243, 42,42, 172, 8, 0, 69, 0, 0, 40, 121, 67, 64, 0, 118,

6, 206, 26, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31,
254, 233, 149, 80, 16, 1, 2,144, 3,0, 0

Hereinabove, changed data elements of partial reoccurrences of data blocks have

been underlined for the sake of clarity.

Moreover, for the sake of clarity, 216 mask bits associated with 216 data elements of
last four data blocks (54 x 4 = 216) are represented as follows:

!o!o!o!o!o!150505050505050505

!o!o!o!o!o!150505050505050505

!o!o!o!o!o!150505050505050505

!o!o!o!o!o!150505050505050505

Hereinabove, a mask bit associated with an unchanged data element is set to a ‘0’
value, while a mask bit associated with a changed data element is set to a ‘1’ value.

The processing hardware of the encoder 10 then operates to encode data values of
the changed data elements, the mask bits associated with the changed and
unchanged data elements, and reference symbols relating partial reoccurrences of
mutually similar data blocks into a plurality of data streams to provide the encoded

10

15

20

25

30

35

-929 -

WO 2015/197202 PCT/EP2015/025042

data (E2). In the example, the plurality of data streams includes a first data stream, a
second data stream and a third data stream, as elucidated below.

The first data stream includes data values of 54 data elements of the first data block
and data values of 27 changed data elements in subsequent data blocks (entropy =
460.24 bits ~= 58 bytes), and is represented as follows:

0, 12, 41, 157, 180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, 0, 0, 40, 120, 250, 64, O,
118, 6, 206, 99, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 192, 146, 80, 16, 0, 254, 185, 9, 0, 0, 121, 13, 80, 201, 204, 1, 2, 175, 204,
17,76, 209, 65, 168, 87, 25, 68, 221, 164, 155, 244, 67, 26, 233, 149, 144, 3

The second data stream includes 27 bytes (216/8 = 27) denoting 216 mask bits
associated with 216 data elements of the subsequent data blocks (entropy = 117.41
bits ~= 15 bytes), and is represented as follows:

0,0,12,2, 0, 48, 15,0, 0, 130, 0, 0, 12, 3, 0, 128, 32, 0, 0, 195, 0, 0, 32, 8, 0, 192,
48

The third data stream includes four reference symbols indicating corresponding
reference data blocks for the subsequent data blocks (entropy = 0 bits ~= 0 bytes),
and is represented as follows:

1,1,1,1

These reference symbols indicate that the first data block is a corresponding
reference data block for a second data block, the second data block is a
corresponding reference data block for a third data block, and so on. Herein, the
reference symbols act as relative pointers that indicate positions of the data blocks

relative to their corresponding reference data blocks or data packets.

As the reference symbols are sorted according to when they occur chronologically,
the entropy produced by the third data stream is reduced considerably. In an
alternative implementation, the reference symbols are optionally inserted into a table
as they occur chronologically into an adaptive order. In such a case, the third data
stream can be delta-coded efficiently.

10

15

20

25

30

35

WO 2015/197202 -30 - PCT/EP2015/025042

In an event that it is desirable to refer only to a previous data block or data packet,
namely a data block or data packet that arrives just before a given data block or data
packet, the third data stream need not be written or transmitted in the encoded data
(E2).

The same example can be implemented also by using one or more ODelta coding
methods in such a way that the ODelta values are always computed from the inter-
block data values. Thus, no separate mask bits, namely a second stream, are
needed, neither are the changed values needed, namely the first stream. Instead, a
third stream is used that contains alone corresponding information by using ODelta
values. In the third stream of coded ODelta values, zero “0” values correspond to
unchanged values, namely the zero bits of a mask, and the other coded ODelta
values correspond to changed values, namely the bits with value ‘1’ in the mask.
However, such correspondences are to be computed in such a way that it can always
be known directly by reading the current coded ODelta value whether change
occurred or not, which ensures that the values can be decoded. When Odelta coding
is used, the first and the second streams in the latest example above can be
replaced by the following stream when “0” is used as the min value, “255” is used as

the max value and “256” as the wrap value:

0, 12, 41, 157, 180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, 0, 0, 40, 120, 250, 64, 0,
118, 6, 206, 99, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 192, 146, 80, 16, 0, 254, 185, 9, 0, O,

00000000000000¢00001190000,0,237,0,0,0,0,0,0,
0,0,00,0,0,0,0,0,0,0,0,9,58,0,0,1, 4, 246, 195, 0, O,

0,00000000000000000040000,0,2200000,0,0,
0,00000000,0,0,8,117,0,0,0,0, 249,139,0,0

0,00000000000000000028000007248,000,0,0,0,0,
0,00000000,0,0,12,99,0,0,0,0, 243, 157,0,0

600000000¢0¢000000000400000,212,0,0,0,0,0,0,
0,0000,0,0,0,0,0,0,0,12,241,0,0,0, 0, 245, 15,0, 0

10

15

20

25

30

-31-

WO 2015/197202 PCT/EP2015/025042

The stream presented above can be compressed efficiently by using, for example,
Range coding, SMRLE or VLC coding. It will be appreciated also that other
compression methods can optionally be used in coding the entropy of the coded
ODelta values in question.

The aforementioned methods of encoding are considerably more cost-efficient than

known data de-duplication methods, because they are potentially capable of:

(i) finding partially duplicated data blocks or data packets apart from fully
duplicated data blocks or data packets; and

(i) encoding only changed data elements in the encoded data (E2).

Writing or transmitting only the changed data elements in the encoded data (E2)
reduces a time needed for processing the encoded data (E2), an amount of encoded
bytes within the encoded data (E2) and an entropy [1,2] of the encoded data (E2) as
compared to the input data (D1). Thus, a considerably high data compression ratio is
achieved as compared to the known data de-duplication methods.

When the input data (D1) is multi-dimensional data, an order in which data values are
defined in data blocks is also an important property, pursuant to embodiments of the
present disclosure. For illustration purposes only, there is now considered a two-
dimensional (2D) image data having 16x16 data values, which can be divided into 16
data blocks in two ways, namely a first case where 16 data blocks have 1x16 or 16x1
data values each and a second case where 16 data blocks have 4x4 data values
each. It will be appreciated that multi-dimensional features, namely spatial correlation
between the data blocks, cannot be utilized as properly in the first case as can be
utilized in the second case.

Furthermore, optionally, the additional encoding unit of the encoder 10 operates to
compress further the three data streams, namely the first, second and third streams,
by employing one or more suitable entropy encoding methods. Additionally or
alternatively, optionally, the processing hardware of the encoder 10 operates to
compress further the three data streams recursively using the aforementioned

10

15

20

25

30

WO 2015/197202 -32- PCT/EP2015/025042

encoding process. This results in a high degree of data compression in the encoded
data (E2).

The encoded data (E2) is then delivered from the encoder 10 to the decoder 20. The
additional decoding unit of the decoder 20 then operates to decompress the encoded
data (E2). Thereafter, the processing hardware of the decoder 20 operates to
execute a decoding process pursuant to embodiments of the present disclosure. The
decoded data (D3) so generated is exactly similar to the input data (D1), as a
lossless mode of operation was used. Consequently, a sum of squared error
between original data elements of the input data (D1) and data elements of the

decoded data (D3) is zero.

There will now be described a lossy mode of operation of the encoder 10, using the
same input data (D1) of the above example. In the lossy mode of operation, a data

compression ratio can be improved even more.

Optionally, the input data (D1) is quantized prior to identifying at least partial
reoccurrences of data blocks or data packets. In an example situation where a
quantization value of four is used, 38 reference symbols assigned with respect to the

initial block size of seven are represented as follows:

1,0,0,0,0, 2, 33, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 50

In this example situation, the most optimal block size is 54.

The processing hardware of the encoder 10 then operates to encode the data values
of the changed data elements, the mask bits and reference symbols into three data

streams to provide the encoded data (E2), as elucidated below.

A first data stream includes quantized data values of 54 data elements of the first
data block and quantized data values of 25 changed data elements in the

subsequent data blocks, and is represented as follows:

10

15

20

25

30

35

40

-33 -

WO 2015/197202 PCT/EP2015/025042

0, 3,10, 39,45,7,0, 4,60, 10, 10, 43, 2,0, 17, 0, O, 10, 30, 62, 16, 0, 29, 1, 51, 24,
15, 60, 48, 13, 43, 4, 4, 15, 8, 50, 48, 55, 47, 7, 45, 0, 7, 63, 48, 36, 20, 4, 0, 63, 46,
2,0,0, 3,20, 50, 51,0, 43, 51, 4, 19, 52, 16, 42, 21, 6, 17, 55, 41, 38, 61, 16, 6, 58,
37,36,0

A second data stream includes 27 bytes denoting 216 mask bits associated with 216

data elements of the subsequent data blocks, and is represented as follows:
0,0,8,2,0,48,14,0,0, 130,0,0, 12, 3,0, 128, 32,0, 0, 195, 0, 0, 32, 8, 0, 192, 48

A third data stream includes four reference symbols indicating corresponding
reference data blocks for the subsequent data blocks, and is represented as follows:

1,1,1,1

When required, the processing hardware of the decoder 20 operates to decode the
encoded data (E2), namely the aforementioned three data streams, to generate the
decoded data (D3). The decoded data (D3) so generated is represented as follows:

0, 12, 40, 156, 180, 28, 0, 16, 240, 40, 40, 172, 8, 0, 68, 0, 0, 40, 120, 248, 64, 0O,
116, 4, 204, 96, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, O,
28, 252, 192, 144, 80, 16, 0, 252, 184, 8, 0, O,

0, 12, 40, 156, 180, 28, 0, 16, 240, 40, 40,172, 8, 0, 68, 0, 0, 40, 120, 12, 64, 0, 116,
4, 204, 80, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, 0, 28,
252, 200, 204, 80, 16, 0, 0, 172, 204, 0, O,

0, 12, 40, 156, 180, 28, 0, 16, 240, 40, 40,172, 8, 0, 68, 0, 0, 40, 120, 16, 64, 0, 116,
4, 204, 76, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, 0, 28,
252, 208, 64, 80, 16,0, 0, 168, 84, 0, O,

0, 12, 40, 156, 180, 28, 0, 16, 240, 40, 40,172, 8, 0, 68, 0, 0, 40, 120, 24, 64, 0, 116,
4, 204, 68, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, 0, 28,
252, 220, 164, 80, 16, 0, 0, 152, 244, 0, O,

0, 12, 40, 156, 180, 28, 0, 16, 240, 40, 40, 172, 8, 0, 68, 0, 0, 40, 120, 64, 64, 0, 116,
4,204, 24, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, 0, 28,
252, 232, 148, 80, 16, 0, 0, 144, 0, 0, 0

Hereinabove, the five data blocks have been shown separated, and changed data
elements of partial reoccurrences of data blocks have been underlined for the sake of

clarity only.

10

15

20

25

30

-34 -

WO 2015/197202 PCT/EP2015/025042

The sum of squared error between the original data elements of the input data (D1)
and the data elements of the decoded data (D3) is 535. This corresponds to some

data loss between the input data (D1) and the decoded data (D3).

Defining Reference Symbols:

Optionally, a reference symbol ‘0’ is used to indicate non-duplicate data blocks or
data packets, namely data blocks or data packets that are not duplicates of any
previous data block or data packet.

Optionally, when there are ‘N’ different reference data blocks or data packets,
reference symbols ‘1’ to ‘N’ are used to indicate partially duplicate data blocks or data
packets, namely data blocks or data packets that are partial duplicates of their
respective reference data blocks or data packets. Herein, ‘N’ is any positive integer
greater than 1.

In the previous examples described in the foregoing, the reference symbol ‘0’ was
not used, as none of the data blocks was a non-duplicate data block or data packet.
Instead, the reference symbol ‘1’ was used, as each of the subsequent data blocks
was a partial duplicate of its corresponding reference data block.

Moreover, when there are multiple reference data blocks or data packets available
for a given data block or data packet, a reference data block or data packet can be
selected from amongst the multiple reference data blocks or data packets. During
selection, a distance of the reference data block or data packet relative to the given
data block or data packet is beneficially taken into account to find a probable
reference symbol with a lower value, without compromising on a match between the

selected reference data block or data packet and the given data block or data packet.

Optionally, when the input data (D1) is large and/or there is a large amount of
redundancy in the input data (D1), separate reference symbols are used for fully
duplicate data blocks or data packets, namely data blocks or data packets that are
exact duplicates of their respective reference data blocks or data packets.

10

15

20

25

30

-35-

WO 2015/197202 PCT/EP2015/025042

In one implementation of the encoder 10, when there are ‘N’ different reference data

blocks or data packets, the reference symbols are optionally defined as follows:

(i) the reference symbol ‘0’ is used to indicate non-duplicate data blocks or data
packets;

(ii) the reference symbols ‘1’ to ‘N’ are used to indicate partially duplicate data
blocks or data packets; and

(i) reference symbols “1+N’ to ‘N+N’ are used to indicate fully duplicate data
blocks or data packets.

For illustration purposes herein, there will now be considered an example wherein
four reference data blocks are identified in the input data (D1). These four reference
data blocks are assigned reference symbols as follows:

reference symbol ‘1’ to a first reference data block;

reference symbol ‘2’ to a second reference data block;

reference symbol ‘3’ to a third reference data block; and

reference symbol ‘4’ to a fourth reference data block.
In this example, value of ‘N’ is four (N = 4).

Now, if a fifth data block in the input data (D1) is a partial duplicate of the second
reference data block, the fifth data block is represented by using the reference
symbol ‘2. If a sixth data block in the input data (D1) is a full duplicate of the second
reference data block, the sixth data block is represented by using the reference

symbol ‘6’, namely 2+N’.

In an alternative implementation, a one-bit symbol is optionally used to indicate
whether a given data block or data packet is a full duplicate or a partial duplicate. The
one-bit symbol is used in addition to a reference symbol for the given data block or
data packet. Herein, the reference symbol indicates a corresponding reference data
block or data packet for the given data block or data packet, while the one-bit symbol
indicates whether the given data block or data packet is a full duplicate or a partial
duplicate of the corresponding reference data block or data packet. The one-bit
symbol has two values, namely ‘0" and ‘1’. For example, the value ‘0’ of the one-bit
symbol can be used to indicate a partial duplicate, while the value ‘1’ of the one-bit
symbol can be used to indicate a full duplicate, or vice versa.

10

15

20

25

30

WO 2015/197202 - 36 - PCT/EP2015/025042

In yet other alternative implementations, the partially duplicate data blocks or data
packets can be defined by using block indexes, data indexes, motion vectors,
database references, encoding methods, and so forth.

Optionally, when separate reference symbols are not used for fully duplicate data
blocks or data packets, then mask bits associated with all unchanged data elements
of the fully duplicate data blocks or data packets are set to a ‘0’ value.

On the other hand, when separate reference symbols are used to indicate fully
duplicate data blocks or data packets, the fully duplicate data blocks or data packets
do not need mask bits. Likewise, when separate reference symbols are used to
indicate non-duplicate data blocks or data packets, the non-duplicate data blocks or

data packets do not need mask bits.

Moreover, optionally, the mask bits are encoded by using a database, as described
in patent application GB 1222240.2, US 13/715,405, hereby incorporated by
reference. When there is a high probability that the mask bits reoccur, the data
compression ratio is susceptible to being improved by delivering a reference to the
mask bits, as compared to entropy-encoding the mask bits as such.

Next, embodiments of the present disclosure will be further described with reference
to the drawings, namely FIG. 2 to FIG. 5B.

FIG. 2 is an illustration of steps of a method of encoding input data (D1) to generate
corresponding encoded data (E2), in accordance with an embodiment of the present
disclosure. The method is depicted as a collection of steps in a logical flow diagram,
which represents a sequence of steps that can be implemented in hardware,
software, or a combination thereof.

At a step 102, at least partial reoccurrences of data blocks or data packets within the

input data (D1) are determined.

10

15

20

25

30

-37 -

WO 2015/197202 PCT/EP2015/025042

At a step 104, unchanged and changed data blocks or data packets are encoded by
employing at least one reference symbol and a plurality of mask bits. As described
earlier, the at least one reference symbol is employed to indicate at least partial
reoccurrences of mutually similar data blocks or data packets and/or to indicate
whether or not there are reoccurrences of mutually similar data blocks or data
packets within the input data (D1). Additionally, the change symbols implemented for
examples as a plurality of mask bits are employed to indicate changed and
unchanged data elements of partial reoccurrences of data blocks or data packets and
also changed values within the input data (D1). Alternatively, delta values are used,
for example in a manner as described in the foregoing.

In accordance with the step 104, the at least one reference symbol and the plurality
of change symbols are encoded into a plurality of data streams, as described earlier.

An encoding processing of the steps 102 and 104 has been described in conjunction
with FIGs. 3A and 3B.

Next, at a step 106, the plurality of data streams are entropy-encoded to generate the
encoded data (E2).

The steps 102 to 106 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

FIGs. 3A and 3B collectively are an illustration of steps of the encoding processing, in
accordance with an embodiment of the present disclosure.

At a step 202, a given data frame/view/channel of the input data (D1) is read to
determine a most optimal size for data blocks or data packets, as described earlier.

In accordance with the step 202, the given data frame/view/channel is split into data
blocks or data packets as per the most optimal size for the data blocks or data

packets.

10

15

20

25

30

-38 -

WO 2015/197202 PCT/EP2015/025042

At a step 204, the data blocks or data packets are read to conduct a search for their

corresponding reference data blocks or data packets.

Next, at a step 206, for a given data block or data packet in the given data
frame/view/channel, it is determined whether or not the given data block or data
packet is a duplicate of a reference data block or data packet.

If, at the step 2086, it is determined that the given data block or data packet is not a
duplicate, a step 208 is performed. At the step 208, a “no duplicate” reference symbol
is written for the given data block or data packet. In one example, the “no duplicate”
reference symbol is defined as a reference symbol ‘0’. Additionally, all data values of
the given data block or data packet are encoded into the encoded data (E2).

If, at the step 206, it is determined that the given data block or data packet is a
duplicate of a reference data block or data packet, a step 210 is performed. At the
step 210, it is determined whether the given data block or data packet is a full
duplicate or a partial duplicate of the reference data block or data packet. When the
lossy mode of operation is used, the step 210 is performed as per a quality level set

for the lossy mode of operation.

If, at the step 210, it is determined that the given data block or data packet is a partial
duplicate, a step 212 is performed. At the step 212, a reference symbol indicating the
reference data block or data packet is written for the given data block or data packet.
The reference symbol is employed as a pointer indicating a position of the reference
data block or data packet relative to the given data block or data packet. In one
example, the reference symbol is selected from the reference symbols ‘1’ to ‘N’,
when there are ‘N’ different reference data blocks or data packets. Additionally, data
values of changed data elements of the given data block or data packet and their
associated mask bits are encoded into the encoded data (E2).

If, at the step 210, it is determined that the given data block or data packet is a full
duplicate, a step 214 is performed. At the step 214, a reference symbol indicating the
reference data block or data packet is written for the given data block or data packet.
In one example, the reference symbol is selected from the reference symbols “1+N’

10

15

20

25

30

-39 -

WO 2015/197202 PCT/EP2015/025042

to ‘N+N’, when there are ‘N’ different reference data blocks or data packets. In
another example, a one-bit symbol indicating a full duplicate is written in addition to

the reference symbol.

A step 216 follows the steps 208, 212 and 214. At the step 216, it is determined
whether or not a next data block or data packet exists in the given data
frame/view/channel. If it is determined that a next data block or data packet exists,
the encoding processing restarts at the step 204. Otherwise, if it is determined that
no next data block or data packet exists in the given data frame/view/channel, a step
218 is performed.

At the step 218, it is determined whether or not a next data frame/view/channel exists
in the input data (D1). If it is determined that a next data frame/view/channel exists,
the encoding processing restarts at the step 202. Otherwise, if it is determined that
no next data frame/view/channel exists in the input data (D1), the encoding

processing stops.

Moreover, an amount of background memory allocated for the encoding processing
is only as large as an amount of data elements in a current data block or data packet
multiplied with the number of possible references (namely block or packet accurate
reference indexing) or summed with the number of possible references minus one
(namely data value accurate reference indexing). In minimum, it is a memory of one
data block or packet. Moreover, a result of the encoding processing, namely, the
encoded data (E2), can be written or transmitted directly into an original memory.
This means that no separate transfer memories are required. Therefore, the method
is capable of functioning as an in-place operation, and is highly cost-effective. The
method, for example, can be used in inexpensive consumer electronic media
products, such as smart phones, MP3 players, tablet computers, televisions, audio
high-fidelity (“nifi”) equipments, e-books and similar.

The steps 202 to 218 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein. For example, in an alternative implementation where separate

10

15

20

25

30

-40 -

WO 2015/197202 PCT/EP2015/025042

reference symbols are not used for fully duplicate data blocks or data packets, the
steps 210 and 214 are removed. Now, if, at the step 206, it is determined that the
given data block or data packet is a duplicate of a reference data block or data

packet, the step 212 is performed instead of the step 210.

Embodiments of the present disclosure provide a computer program product
comprising a non-transitory (namely non-transient) computer-readable storage
medium having computer-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized device comprising
processing hardware to execute the method as described in conjunction with FIGs. 2
and 3A-B. The computer-readable instructions are optionally downloadable from a
software application store, for example, from an “App store” to the computerized

device.

FIG. 4 is an illustration of steps of a method of decoding encoded data (E2) to
generate corresponding decoded data (D3), in accordance with an embodiment of
the present disclosure. The method is depicted as a collection of steps in a logical
flow diagram, which represents a sequence of steps that can be implemented in

hardware, software, or a combination thereof.

At a step 302, the encoded data (E2) is entropy-decoded to provide a plurality of data

streams. As described earlier, the plurality of data streams include one or more of:

(i) a first data stream that includes data values of at least one reference data
block and/or data packet and data values of changed data elements of
subsequent data blocks;

(ii) a second data stream that includes a plurality of mask bits; and/or

(i) athird data stream that includes at least one reference symbol.

At a step 304, unchanged and changed data blocks are decoded from the plurality of
data streams. In accordance with the step 304, the at least one reference symbol and
the plurality of change symbols are decoded to generate data for at least partial
reoccurrences of data blocks or data packets, and to generate data for changed data
elements of partial reoccurrences of data blocks or data packets.

10

15

20

25

30

-41 -

WO 2015/197202 PCT/EP2015/025042

A decoding processing of the step 304 has been described in conjunction with FIGs.
5A and 5B.

Next, at a step 306, the data generated for the at least partial reoccurrences of data
blocks or data packets and the data generated for the changed data elements of the
partial reoccurrences of data blocks or data packets are assembled to generate the
decoded data (D3).

The steps 302 to 306 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

FIGs. 5A and 5B collectively are an illustration of steps of the decoding processing, in

accordance with an embodiment of the present disclosure.

At a step 402, a given reference symbol is read from the third data stream provided
in the encoded data (E2).

At a step 404, it is determined whether or not the given reference symbol is a “no
duplicate” reference symbol. In other words, it is determined whether or not the given

reference symbol corresponds to a non-duplicate data block or data packet.

If, at the step 404, it is determined that the given reference symbol is a “no duplicate”
reference symbol, a step 406 is performed. At the step 406, all data values of the
non-duplicate data block or data packet are decoded to generate data for the non-

duplicate data block or data packet.

If, at the step 404, it is determined that the given reference symbol is not a “no
duplicate” reference symbol, a step 408 is performed. At the step 408, it is
determined whether or not the given reference symbol is a “full duplicate’ reference
symbol. In other words, it is determined whether or not the given reference symbol

corresponds to a fully duplicate data block or data packet.

10

15

20

25

30

-42 -

WO 2015/197202 PCT/EP2015/025042

If, at the step 408, it is determined that the given reference symbol is not a “full
duplicate’ reference symbol, a step 410 is performed. At the step 410, mask bits
associated with data elements of a partially duplicate data block or data packet are
checked to decode data values of changed data elements of the partially duplicate
data block or data packet. Additionally, data values of unchanged elements are taken
from a reference data block or data packet to which the given reference symbol
points. In accordance with the step 410, the data values of the unchanged elements
are combined with the data values of the changed data elements to generate data for

the partially duplicate data block or data packet.

If, at the step 408, it is determined that the given reference symbol is a “full duplicate”
reference symbol, a step 412 is performed. At the step 412, data values of
unchanged elements are taken from the reference data block to which the given
reference symbol points. The data values of the unchanged elements are set to

generate data for a fully duplicate data block or data packet.

A step 414 follows the steps 406, 410 and 412. At the step 414, it is determined
whether or not a next reference symbol exists in the third data stream. If it is
determined that a next reference symbol exists, the decoding processing restarts at
the step 402.

Otherwise, if it is determined that no next reference symbol exists, a step 416 is
performed. At the step 416, the data generated for the data blocks or data packets at
the steps 406, 410 and 412 is assembled to generate the decoded data (D3).

It will be appreciated that it is possible that a channel, a view or a frame is updated
separately whenever decoding such a portion of the data is completed, irrespective

of whether or not all data is completed.

The steps 402 to 416 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

10

15

20

WO 2015/197202 -43- PCT/EP2015/025042

Embodiments of the present disclosure provide a computer program product
comprising a non-transitory (namely non-transient) computer-readable storage
medium having computer-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized device comprising
processing hardware to execute the method as described in conjunction with FIGs. 4
and 5A-B. The computer-readable instructions are optionally downloadable from a
software application store, for example, from an “App store” to the computerized

device.

Modifications to embodiments of the invention described in the foregoing are possible
without departing from the scope of the invention as defined by the accompanying
claims. Expressions such as “including”, “comprising”, “incorporating”, “consisting of”,
‘have”, “is” used to describe and claim the present invention are intended to be
construed in a non-exclusive manner, namely allowing for items, components or
elements not explicitly described also to be present. Reference to the singular is also
to be construed to relate to the plural. Numerals included within parentheses in the
accompanying claims are intended to assist understanding of the claims and should

not be construed in any way to limit subject matter claimed by these claims.

WO 2015/197202

-44 -

APPENDIX

PCT/EP2015/025042

[1]

Entropy (information theory) - Wikipedia, the
free encyclopedia (accessed September 27,
2013). URL:

httn://en.wikipedia.ora/wiki/E

ntropy %28information theo

ry%29

[2]

Shannon, Claude E. (1948) (accessed
November 28, 2012) A Mathematical Theory of
Communication. URL:

hilp://cm.bell-

labs.com/cm/ms/what/shann

onday/shannon1948.ndf

[3]

Lossless compression - Wikipedia, the free
encyclopedia (accessed September 27, 2013).
URL:

hitn//en.wikipedia.oro/wiki/L

ossless compression

[4]

Lossy compression - Wikipedia, the free
encyclopedia (accessed September 27, 2013).
URL.:

hitp://en.wikipedia.oro/wiki/L

0SSy compression

[5]

Data deduplication - Wikipedia, the free
encyclopedia (accessed September 27, 2013).
URL:

htto://en.wikinedia.ora/wiki/D

ala deduplication

[6]

Hypertext Transfer Protocol -- HTTP/1.1
(accessed September 27, 2013). URL:

hilo//lwww. w3.org/Protocols/
rfc2616/rfc2616.himl

[7]

Real-Time Messaging Protocol (RTMP)
specification | Adobe Developer Connection
(accessed September 27, 2013). URL:

hiln://'www.adobe.com/devn

et/rimp.html

[8]

Windows Azure: Microsoft's Cloud Platform |
Cloud Hosting | Cloud Services (accessed
September 27, 2013). URL:

hito://www.windowsazure.co

m/en-us/

[9]

Moore's law - Wikipedia, the free encyclopedia
(accessed September 27, 2013). URL:

hitn://en. wikipedia.ora/wiki/M

oore%27s law

[10]

US patent US 7643505B1 (Colloff): “Method
and system for real time compression and

decompression”

10

15

20

25

30

- 45 -

WO 2015/197202 PCT/EP2015/025042
CLAIMS
We claim:
1. An encoder for encoding input data (D1) to generate corresponding encoded

data (E2), characterized in that the encoder includes data processing hardware

which is operable:

(a) to determine at least partial reoccurrences of data blocks or data packets
within the input data (D1), wherein the data blocks or data packets include a
plurality of bytes;

(b) to employ at least one reference symbol to relate reoccurrences of mutually
similar data blocks or data packets and/or to indicate whether or not there are
reoccurrences of mutually similar data blocks or data packets within the input
data (D1) ;

(c) to employ a plurality of change symbols to indicate changed and unchanged
data elements of partial reoccurrences of data blocks or data packets within
the input data (D1) and a change of data values of changed data elements;
and

(d) to encode the at least one reference symbol and the plurality of change
symbols into the encoded data (E2).

2. An encoder as claimed in claim 1, characterized in that the encoder is
operable to implement the plurality of change symbols in (c) as a plurality of mask
bits comprising bits/flags indicative of changed and not-changed values and also
changed values or change symbols contain information regarding changed or not-
changed values and also change of values within delta values.

3. An encoder as claimed in claim 2, characterized in that the delta value is
assigned a zero value for indicating not-changed, and a non-zero value for indicating

change.

4. The encoder as claimed in claim 1, 2 or 3, characterized in that the processing
hardware is operable to represent one or more unchanged data elements of a given

10

15

20

25

30

- 46 -

WO 2015/197202 PCT/EP2015/025042

data block or data packet by using one or more values indicative of no change,
wherein the one or more values are different to those present in the input data (D1).

5. The encoder as claimed in any one of claims 1 to 4, characterized in that the
processing hardware is operable to employ one or more pointers for indicating one or
more at least partial reoccurrences of data blocks or data packets relative to a

corresponding reference data block or data packet.

6. The encoder as claimed in claim 5, characterized in that the one or more

pointers are one or more relative pointers.

7. The encoder as claimed in any one of claims 1 to 6, characterized in that the
processing hardware is operable to encode the at least one reference symbol and
the plurality of change symbols into a plurality of data streams to provide the
encoded data (E2).

8. The encoder as claimed in any one of claims 1 to 7, characterized in that the
processing hardware is operable to encode the input data (D1) provided as at least
one of: one-dimensional data, multi-dimensional data, audio data, image data, video
data, sensor data, text data, binary data, medical data.

9. The encoder as claimed in any one of claims 1 to 8, characterized in that the
encoder includes an additional encoding unit for encoding at least a portion of the at
least one reference symbol and the plurality of change symbols into the encoded
data (E2), wherein the additional encoding unit is operable to employ at least one of:
entropy modifying encoding, delta encoding, ODelta encoding, range encoding, Run
Length Encoding (RLE), Split RLE (SRLE), interpolation encoding.

10. The encoder as claimed in any one of claims 1 to 9, characterized in that the
processing hardware is operable to determine a most optimal size for the data blocks
or data packets when processing the input data (D1), and to provide, within the
encoded data (E2), information indicative of the most optimal size for the data blocks
or data packets.

10

15

20

25

30

-47 -

WO 2015/197202 PCT/EP2015/025042

11. A method of encoding input data (D1) in an encoder to generate
corresponding encoded data (E2), wherein the encoder includes data processing
hardware for processing the input data (D1), characterized in that the method
includes:

(a) determining at least partial reoccurrences of data blocks or data packets
within the input data (D1), wherein the data blocks or data packets include a
plurality of bytes;

(b) employing at least one reference symbol to relate reoccurrences of mutually
similar data blocks or data packets and/or to indicate whether or not there are
reoccurrences of mutually similar data blocks or data packets within the input
data (D1) ;

(c) employing a plurality of change symbols to indicate changed and unchanged
data elements of partial reoccurrences of data blocks or data packets within
the input data (D1) and a change of data values of changed data elements;
and

(d) encoding the at least one reference symbol and the plurality of change
symbols into the encoded data (E2).

12. A method as claimed in claim,11, characterized in that the plurality of change
symbols in (c) includes a plurality of mask bits comprising bits/flags indicative of
changed and not-changed values and also changed values or change symbols
contain information regarding changed or not-changed values and also change of

values within delta values.

13. A method as claimed in claim 12, characterized in that the delta value is
assigned a zero value for indicating not-changed, and a non-zero value for indicating

change.

14. The method as claimed in claim 11, 12 or 13, characterized in that the method
includes representing one or more unchanged data elements of a given data block or
data packet by using one or more values indicative of no change, wherein the one or

more values are different to those present in the input data (D1).

10

15

20

25

30

-48 -

WO 2015/197202 PCT/EP2015/025042

15. The method as claimed in claim 11, 12, 13 or 14, characterized in that the
method includes employing one or more pointers for indicating one or more at least
partial reoccurrences of data blocks or data packets relative to a corresponding
reference data block or data packet.

16. The method as claimed in claim 15, characterized in that the one or more

pointers are one or more relative pointers.

17. The method as claimed in any one of claims 11 to 16, characterized in that the
method includes encoding the at least one reference symbol and the plurality of

change symbols into a plurality of data streams to provide the encoded data (E2).

18. The method as claimed in any one of claims 11 to 17, characterized in that the
method includes encoding the input data (D1) provided as at least one of: one-
dimensional data, multi-dimensional data, audio data, image data, video data, sensor
data, text data, binary data, medical data.

19. The method as claimed in any one or claims 11 to 18, characterized in that the

method includes:

(e) employing an additional encoding unit for encoding at least a portion of the at
least one reference symbol and the plurality of change symbols into the
encoded data (E2); and

(f) arranging for the additional encoding unit to employ at least one of: entropy
modifying encoding, delta encoding, ODelta encoding, range encoding, Run
Length Encoding (RLE), Split RLE (SRLE), interpolation encoding.

20. The method as claimed in any one of claims 11 to 19, characterized in that the

method includes:

() determining a most optimal size for the data blocks or data packets when
processing the input data (D1); and

(h) providing, within the encoded data (E2), information indicative of the most

optimal size for the data blocks or data packets.

10

15

20

25

30

-49 -

WO 2015/197202 PCT/EP2015/025042

21. A decoder for decoding encoded data (E2) to generate corresponding
decoded data (D3), wherein the decoder includes processing hardware for
processing the encoded data (E2), characterized in that:

(@) the processing hardware is operable to decode the encoded data (E2) to
identify at least one reference symbol and a plurality of change symbols;

(b) the processing hardware is operable to employ the at least one reference
symbol to generate data for at least partial reoccurrences of data blocks or
data packets within the encoded data (E2);

(c) the processing hardware is operable to employ the plurality of change symbols
to generate data for changed data elements of partial reoccurrences of data
blocks or data packets within the encoded data (E2); and

(d) the processing hardware is operable to assemble the data generated for the at
least partial reoccurrences of data blocks or data packets and the data
generated for the changed data elements of the partial reoccurrences of data

blocks or data packets, to generate corresponding decoded data (D3).

22. The decoder as claimed in claim 21, characterized in that the processing
hardware is operable to decode one or more unchanged data elements of a given
data block or data packet from one or more values indicative of no change, wherein
the one or more values are different to those present in the decoded data (D3).

23. The decoder as claimed in claim 21 or 22, characterized in that the processing
hardware is operable to decode the encoded data (E2) to identify one or more
pointers indicating one or more at least partial reoccurrences of data blocks or data
packets relative to a corresponding reference data packet or data block.

24. The decoder as claimed in claim 23, characterized in that the one or more

pointers are one or more relative pointers.

25. The decoder as claimed in any one of claims 21 to 24, characterized in that
the processing hardware is operable to decode the at least one reference symbol
and the plurality of change symbols from a plurality of data streams provided within
the encoded data (E2).

10

15

20

25

30

-50 -

WO 2015/197202 PCT/EP2015/025042

26. The decoder as claimed in any one of claims 21 to 25, characterized in that
the decoded data (D3) is provided as at least one of: one-dimensional data, multi-
dimensional data, audio data, image data, video data, sensor data, text data, binary
data, medical data.

27. The decoder as claimed in any one of claims 21 to 26, characterized in that
the decoder includes an additional decoding unit for decoding at least a portion of the
at least one reference symbol and the plurality of change symbols from the encoded
data (E2), wherein the additional decoding unit is operable to employ at least one of:
entropy modifying decoding, delta decoding, ODelta decoding, range decoding, run

length decoding, split run length decoding, interpolation decoding.

28. The decoder as claimed in any one of claims 21 to 27, characterized in that
the processing hardware is operable to receive, within the encoded data (E2),

information indicative of a size of the data blocks or data packets.

29. A method of decoding encoded data (E2) to generate corresponding decoded
data (D3), wherein the method includes processing the encoded data (E2),
characterized in that the method includes:

(@) decoding the encoded data (E2) to identify at least one reference symbol and
a plurality of change symbols;

(b) employing the at least one reference symbol to generate data for at least
partial reoccurrences of data blocks or data packets within the encoded data
(E2);

(c) employing the plurality of change symbols to generate data for changed data
elements of partial reoccurrences of data blocks or data packets within the
encoded data (E2); and

(d) assembling the data generated for the at least partial reoccurrences of data
blocks or data packets and the data generated for the changed data elements
of the partial reoccurrences of data blocks or data packets, to generate
corresponding decoded data (D3).

30. The method as claimed in claim 29, characterized in that the method includes
decoding one or more unchanged data elements of a given data block or data packet

10

15

20

25

30

-51-

WO 2015/197202 PCT/EP2015/025042

from one or more values indicative of no change, wherein the one or more values are

different to those present in the decoded data (D3).

31. The method as claimed in claim 29 or 30, characterized in that the method
includes decoding the encoded data (E2) to identify one or more pointers indicating
one or more at least partial reoccurrences of data blocks or data packets relative to a

corresponding reference data packet or data block.

32. The method as claimed in claim 31, characterized in that the one or more

pointers are one or more relative pointers.

33. The method as claimed in any one of claims 29 to 32, characterized in that the
method includes decoding the at least one reference symbol and the plurality of
change symbols from a plurality of data streams provided within the encoded data
(E2).

34. The method as claimed in any one of claims 29 to 33, characterized in that the
decoded data (D3) is provided as at least one of: one-dimensional data, multi-
dimensional data, audio data, image data, video data, sensor data, text data, binary
data.

35. The method as claimed in any one of claims 29 to 34, characterized in that the

method includes:

(e) employing an additional decoding unit for decoding at least a portion of the at
least one reference symbol and the plurality of change symbols from the
encoded data (E2); and

(f) arranging for the additional decoding unit to employ at least one of: entropy
modifying decoding, delta decoding, ODelta decoding, range decoding, run
length decoding, split run length decoding, interpolation decoding.

36. The method as claimed in any one of claims 29 to 35, characterized in that the
method includes receiving, within the encoded data (E2), information indicative of a
size of the data blocks or data packets.

10

-52 -

WO 2015/197202 PCT/EP2015/025042

37. A computer program product comprising a non-transitory computer-readable
storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device
comprising processing hardware to execute a method as claimed in claim 11 or claim
29.

38. A codec including at least one encoder as claimed in claim 1 for encoding
input data (D1) to generate corresponding encoded data (E2), and at least one
decoder as claimed in claim 21 for decoding the encoded data (E2) to generate

corresponding decoded data (D3).

WO 2015/197202 PCT/EP2015/025042

1/7

D1
o . i
i i
i Encoder 10 |
i |
i i
i i
i i
; Codec 30 Eo i
i i
i i
i |
@ \/ a
i V i
i Decoder 20 ,
i i
i i
L I I i

WO 2015/197202

Determine at least partial reoccurrences
of data blocks/packets within input data (D1)
102

I

Encode unchanged and changed
data blocks/packets into data streams
104

J[

Entropy-encode data streams
to generate encoded data (E2)
106

10
(Stop)

PCT/EP2015/025042

FIG. 2

WO 2015/197202 PCT/EP2015/025042

3/7

Start

Read input data (D1) as frame/view/channel to determine
optimal data block/packet size, and split input data (D1)
into data blocks/packets 202

Read the data block/packet, and conduct the reference
block/packet search 204

v

Data block/packet
is a duplicate (referenced) ?
206

Yes

Data block/packet
is a full duplicate ?
210

Yes
Write a’”’no) Write a reference Write a
duplicate symbol symbol (e.g. 1to N)
reference

(e.g. 0), and and encode symbol (e.qg. N

encode all changed data 3; o Nﬁ\i)
(changed) data values, and 514

values 208 associated bit —

masks 212

6 0

FIG. 3A

WO 2015/197202 PCT/EP2015/025042

4/7

Next data
block/packet exists?
216

Next data
frame/view/channel
exists?
218

Yes)@

FIG. 3B

WO 2015/197202 PCT/EP2015/025042

o/7

(Start)
1
10
Entropy-decode encoded data (E2)

to provide data streams
302

Decode unchanged and changed

blocks/packets from data streams
304

Assemble decoded blocks/packets to

generate decoded data (D3)
306

10
(Stop)

FIG. 4

WO 2015/197202 PCT/EP2015/025042

6/7

Start 9

Read reference symbol from data stream 402

Reference symbol
is a “no duplicate”
reference symbol ?
404

No

Reference symbol
is a “full duplicate”
symbol ?
408

Yes
Decode changed data Set] g
values and et unchange
?;C;ndgeegl)l combine decoded values from
data values tol | changed values and reference
generate data unchanged values block/packet to
for non- from reference generate fully
duplicate block/packet to duplicate
block/packet generate data for block/packet
406 partially duplicate 412
T block/packet 410

G ®

FIG. S5A

WO 2015/197202 PCT/EP2015/025042

717

Next reference symbol
exists ?
414

Assemble
generated data into
decoded data (D3)

416

FIG. 5B

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/025042

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO3M7/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO3M

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 20107056265 Al (DATADOMAIN INC [US]) 1-38
20 May 2010 (2010-05-20)
paragraph [0001]
paragraph [0010] - paragraph [0026]
paragraph [0033]
paragraph [0040] - paragraph [0041]
X US 7 643 505 B1 (COLLOFF IAN G [US]) 1-38
5 January 2010 (2010-01-05)
column 1; figures 4a-4f
column 4 - column 7
X US 2014/075150 Al (ABALI BULENT [US] ET 1-38
AL) 13 March 2014 (2014-03-13)
paragraph [0006]
paragraph [0012] - paragraph [0039]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

21 September 2015

Date of mailing of the international search report

28/09/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Belardinelli, Carlo

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2015/025042
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2010056265 Al 20-05-2010 CN 102246137 A 16-11-2011
EP 2359233 Al 24-08-2011
US 2010125553 Al 20-05-2010
WO 2010056265 Al 20-05-2010
US 7643505 Bl 05-01-2010 NONE
US 2014075150 Al 13-03-2014 US 2014075150 Al 13-03-2014
US 2014075152 Al 13-03-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Biblio page:1
	Description page:3
	Claims page:47
	Drawings page:55
	ISR page:62

